Hepatocellular oxidant stress following intestinal ischemia-reperfusion injury.

نویسندگان

  • R H Turnage
  • J Bagnasco
  • J Berger
  • K S Guice
  • K T Oldham
  • D B Hinshaw
چکیده

Reperfusion of ischemic intestine results in acute liver dysfunction characterized by hepatocellular enzyme release into plasma, reduction in bile flow rate, and neutrophil sequestration within the liver. The pathophysiology underlying this acute hepatic injury is unknown. This study was undertaken to determine whether oxidants are associated with the hepatic injury and to determine the relative value of several indirect methods of assessing oxidant exposure in vivo. Rats were subjected to a standardized intestinal ischemia-reperfusion injury. Hepatic tissue was assayed for lipid peroxidation products and oxidized and reduced glutathione. There was no change in hepatic tissue total glutathione following intestinal ischemia-reperfusion injury. Oxidized glutathione (GSSG) increased significantly following 30 and 60 min of reperfusion. There was no increase in any of the products of lipid peroxidation associated with this injury. An increase in GSSG within hepatic tissue during intestinal reperfusion suggests exposure of hepatocytes to an oxidant stress. The lack of a significant increase in products of lipid peroxidation suggests that the oxidant stress is of insufficient magnitude to result in irreversible injury to hepatocyte cell membranes. These data also suggest that the measurement of tissue GSSG may be a more sensitive indicator of oxidant stress than measurement of products of lipid peroxidation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arterial levels of oxidized glutathione (GSSG) reflect oxidant stress in vivo.

Neutrophil-related, oxidant-mediated injury to the pulmonary microvasculature appears to follow endotoxemia, cutaneous thermal injury, and ischemia-reperfusion injury to the liver or intestine. Glutathione is an important endogenous intracellular oxygen radical scavenger. Plasma concentrations of oxidized glutathione (GSSG) reflect oxidant injury resulting from an overdose of certain oxidativel...

متن کامل

The preventive effects of dexmedetomidine against intestinal ischemia-reperfusion injury in Wistar rats

Objective(s): Intestinal ischemia-reperfusion is a major problem, which may lead to multiorgan failure and death. The aim of this study was to evaluate the protective effects of dexmedetomidine on cell proliferation, antioxidant system, cell death, and structural integrity in intestinal injury induced by ischemia-reperfusion in rats. Materials and Methods: Animals were randomized into three gro...

متن کامل

Balanced oxidative status by nesfatin-1 in intestinal ischemia-reperfusion.

OBJECTIVE Ischemia causes reversible or irreversible cell or tissue damage and reperfusion can exaggerate cellular damage. Microvascular dysfunction is induced and causes enhanced fluid filtration in capillaries. At the acute phase of reperfusion more oxygen radicals are activated. Nesfatin-1 protects brain against oxidative damage and heart against ischemia/reperfusion damage. In our study, we...

متن کامل

The Protective Effect of Orally Administered Amlodipine against Intestinal Ischemia-Reperfusion Injury in Rats

Objective- This study investigated the effect of amlodipine on intestinal ischemia-reperfusion injury in ratsDesign-Experimental studyAnimals-Fifteen male Sprague-Dawly rats weighing 200-220gProcedure- Rats were randomly divided into 3 groups: IR group (operation with clamping), sham group (operation without clamping), and IRA group (operation with clamping and 5mg/kg amlodipi...

متن کامل

Cytoprotective Effect of Ferritin H in Renal Ischemia Reperfusion Injury

Oxidative stress is a major contributor to kidney injury following ischemia reperfusion. Ferritin, a highly conserved iron-binding protein, is a key protein in the maintenance of cellular iron homeostasis and protection from oxidative stress. Ferritin mitigates oxidant stress by sequestering iron and preventing its participation in reactions that generate reactive oxygen species. Ferritin is co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of surgical research

دوره 51 6  شماره 

صفحات  -

تاریخ انتشار 1991